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Abstract
This paper presents the results of a thermodynamic
cycle analysis of a pulse detonation engine (PDE) using
a hydrogen-air mixture at static conditions. The cycle
performance results, namely the specific thrust, fuel
consumption and impulse are compared to a single
cycle CFD analysis for a detonation tube which
considers finite rate chemistry. The differences in the
impulse values were indicative of the additional
performance potential attainable in a PDE.

Introduction
Previous studies have demonstrated the impact of
dissociation in propulsion engines.1 A significant
reduction in the sensible heat release available for
conversion into thrust occurs due the to high
temperature dissociation of the burning gases. A
subsequent analysis2 was performed in which the
specific thrust, fuel consumption and impulse were
compared for a ramjet, a gas turbine and a PDE. In that
study, it was found that a PDE has comparable
performance with a ramjet over a wide Mach number
range. In comparison with a turbojet the PDE was
found to be competitive only when the turbojet was
operated with a low mechanical compression ratio.
More recently, a single cycle CFD analysis was
performed for a detonation tube,3 which included finite
rate chemistry modeling.

It was found that some recombination took place in the
burning gases behind the detonation front.3 The
recombination served to decrease the amount of

sensible heat loss that occurred during the detonation
process due to dissociation

This paper examines the effect of the real gas
chemistry, using a combination of the single cycle CFD
and the thermodynamic cycle calculations for
hydrogen/air mixtures. The results are used to establish
the actual performance of a PDE versus the maximum
performance potential.

Analyses

Thermodynamic Cycle
The thermo cycle analysis used was that developed by
Heiser and Pratt4 and modified in reference 2 for
variable gamma and specific heat ratio and for variable
reference conditions. The analysis is a classical closed
cycle analysis that is independent of time. The
significant parameters of the analysis are the thermal
efficiency and the sensible heat release, which can be
converted into thrust. Those values can be used to
calculate all of the usual performance parameters, such
as specific thrust, fuel consumption and impulse. In this
manner, the maximum performance capability for a
pulse detonation engine can be established.

In order to perform the cycle analysis, it is necessary to
specify the heat release occurring during the
detonation/combustion process. The usual practice has
been to assume that the lower heating value of the fuel
is a reasonable value to use. As mentioned in the
Introduction, the real gas effects such as dissociation
and recombination cause the sensible heat release to be
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less than the lower heating value of the fuel.1 The
decrease in heat release turns out to be a function of
equivalence ratio, pressure and temperature as well as
fuel type.

In this study, the sensible heat release during the
detonation/combustion process was determined in two
ways; the first being the value calculated from the CEA
equilibrium code5 and the second being the heat
released based on finite rate reactions from the CFD
code discussed in the next section. Unlike the
equilibrium value, the finite rate heat release accounts
for recombination and yields a higher heat release
value.

The two values of the heat release were used in the
cycle code to determine the specific thrust, fuel
consumption and impulse for a hydrogen/air mixture at
standard pressure and temperature. The equivalence
ratios investigated were 0.6, 0.8, 1.0, and 1.15. The
results consisted of two values of each of the
performance parameters, one based on the equilibrium
heat release and the other on the finite rate heat release.

The propulsion performance parameters were then
interpreted under the premise that the equilibrium heat
release did not reflect the influence of recombination on
heat release and hence, yields a lower than maximum
performance for the PDE. On the other hand, the finite
rate heat release, which properly accounts for both
dissociation and recombination, will yield the upper
limit of performance potential for a PDE cycle.

CFD Analysis
The CFD analysis used was developed by Yungster and
Radhakrishnan.6–8 The code solves the axisymmetric
Navier Stokes equations including finite rate chemistry
and real gas effects using an implicit, total- variation
diminishing (TVD) algorithm. The code includes a
generalized detailed chemistry capability, various
options for turbulence models, and steady state or time
accurate marching algorithms. For this study, the
viscous forces were not included and, therefore the
Euler equations were actually used to perform single
cycle calculations.

The numerical method used for solving the governing
equations is described in detail in reference 6. Briefly,
the equation set is discretized using a fully implicit,
first order time accurate, variable-step backward
differentiation formula method. The numerical fluxes
are discretized using a second order spatially accurate
TVD scheme. The resulting equations are then
linearized in a conservative manner and solved
iteratively, by using a lower-upper relaxation procedure

consisting of successive Gauss-Seidel (LU-SGS)
sweeps.

The chemical reaction mechanism for hydrogen-air
combustion was based on Jachimowski’s model9 and
consists of 27 elementary reactions among 12 species.
The inversion of large matrices is avoided by
partitioning the system into reacting and non-reacting
parts. Consequently, the matrices that have to be
inverted are of the same size as those that arise in the
commonly used point implicit methods. An important
advantage of the present method is that it is stable for
large CLF values, thereby enabling the use of large time
steps to minimize computational cost.

In order to maintain good resolution of the detonation
front at all times a multi-level, dynamically adaptive
grid was used in which a very fine sub-grid
continuously slides along with the detonation wave
front.8 This approach avoided the use of thousands of
grid points.

The CFD finite rate calculations were used to compute
the species evolution and the resulting thrust and
impulse. They were also used to determine the sensible
heat release occurring during the detonation and
combustion processes for the hydrogen-air mixtures at
the same equivalence ratios used in the thermo cycle
analyses.

Comparative Analysis
The comparison of the cycle code and the CFD
calculations was carried out as shown in figure 1. The
cycle analysis used the sensible heat release determined
from EQL to calculate the performance parameters and
then used the finite rate value from the CFD to yield a
second set of values. It is the second set, which is based
on the finite rate heat release, that are believed to yield
the maximum performance (upper cycle) limits for a
PDE.

In the CFD analysis, detonation is initiated in a one
meter length tube with a diameter of 6.6 centimeters
using a 2 cm zone of high temperature nitrogen at
2500K and 40 bar. The tube is filled with hydrogen/air
at 298K and 1 bar. This starting transient is neglected in
the “ignition corrected” values of performance,
whereas, in the “uncorrected results,” the transient was
included. This correction is justified on the basis of the
need to introduce an ignition mechanism to obtain
detonation, which creates an artificial force that is not
representative of the actual ignition process3. The
resulting values of the corrected parameters are
believed to be representative of the flow geometry
being analyzed. Figure 2 (from ref. 3) shows the result
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of the ignition correction. Further efforts are underway
to reduce the size of the ignition source and the
corresponding correction required.

System Analyzed
For the thermodynamic cycle, it is assumed that the
inlet has no losses and operates in an isentropic manner.
The pressure and temperature are at standard conditions
for this example. There is no ram pressure since the
forward velocity is zero, i.e. static thrust conditions.
The nozzle, which may be of any shape, is also
assumed to be isentropic, yielding the maximum thrust
for the operating conditions of the detonation chamber.
Although a nozzle geometry having this characteristic
is unknown at this time, it is not required for a cycle
calculation, which seeks the upper performance
capability of a PDE.

For the CFD analysis, the inlet again is assumed to have
no losses. Admission of fuel and air occurs with no
entropy generation. In fact, for the analysis, it is
assumed that the detonation chamber is closed at the
front end for the single cycle being analyzed.

However, in order to perform the CFD analysis a
description of the geometry at the downstream end is
required. In the absence of any specific design, it is
assumed that the detonation chamber is open at the
downstream end and has a constant diameter
throughout and discharges to an ambient pressure of
1 bar. In this case, the CFD analysis, with the proper
boundary conditions, should yield the “actual”
performance for that geometry subject to the
approximations in the solved equations, including the
neglect of viscous effects. The term “actual” in this case
refers to the fact that the expansion process is not
isentropic. Hence, the difference between the thermo
cycle analysis and the CFD will be due to the non-
isentropic nozzle expansion losses and some frictional
effects.

The analyzed geometry, therefore, is as shown in
figure 3.

Results

Sensible Heat Release
The heat releases calculated using the equilibrium code
of Gordon and McBride,5 and the finite rate CFD
chemistry model are shown in figure 4. The differences
in the two curves are due to the recombination that
occurs as the heated gases burn and flow out of the
detonation tube. As the gases recombine, additional
heat is released.

The loss in sensible heat is found to be much larger at
the higher equivalence ratios and is primarily due to the
higher detonation temperatures reached. For an
equivalence ratio of 0.6, the detonation temperature is
2422K and for a value of 1.15, the temperature reaches
2967K.

Thermo Cycle and CFD Analyses
Using the above variation of heat release values, the
thermo cycle code yields the fuel specific impulse
results shown in figure 5. As noted previously, the
higher sensible heat associated with finite rate
chemistry lead to higher values of impulse than those
associated with equilibrium chemistry.

It is the performance associated with the finite rate
results that are interpreted as the upper limit of PDE
propulsion performance.

The ignition corrected results from the CFD analysis
are shown in figure 6. As stated previously, the
artificial force created by the ignition effect is not
considered representative of the actual ignition process,
and the resulting values of the ignition corrected values
are believed to be accurate for the flow geometry being
analyzed.

As stated in the Analyses section under
Thermodynamic Cycle, the interpretation of the results
is that the equilibrium heat release does not reflect the
influence of recombination on heat release and hence,
yields a lower than maximum performance for the PDE.
On the other hand, use of the finite heat release in the
thermo cycle, which correctly accounts for both
dissociation and recombination, yields the upper cycle
limit for the propulsion performance of a PDE cycle.

Plotting the thermo cycle finite rate result from figure 5
and the CFD ignition corrected finite rate results from
figure 6 yields the plot shown in figure 7.

The differences in the two curves of figure 7 represent
the losses principally incurred by the open-ended
detonation tube and the nature of the non-isentropic
expansion. The losses are on the order of 5 percent
(250 seconds) of the impulse.

It is interesting to observe that the ratio of the impulse
values from the CFD to the impulse value of the thermo
cycle calculations, (ICFD/I thermo), have values from
0.94 to 0.95. It is informative, therefore, to look at the
values determined by the cycle analysis using a nozzle
efficiency of 0.95. When these calculations are
performed, the impulse values turn out to be 6 percent
lower, which is close to our expectations.
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The differences in the two curves of figure 7, which are
taken to be the real performance versus the potential
performance, are seen to amount to values between
200 and 300 seconds. These differences, once again,
emphasize the critical nature of the nozzle exhaust
design in order to achieve the potential gain in PDE
propulsion performance.4

Comparison with Experimental Data
The data obtained in this study were compared to that
obtained at the Wright Labs by Schafer, Stutrud and
Bradley.10 In figure 8, our data points (from figure 7
described above) are shown on a copy of the impulse
versus equivalence plot from figure 12 of reference 10.
The open squares represent our thermo cycle upper
performance limit and the open diamond symbols
represent our ignition corrected finite rate CFD results.
The CFD results are in excellent agreement with the
data and the cycle results show the potential
improvement. Note that the differences were more
clearly depicted in figure 7. Also shown in the figure
are the results for a single cycle PDE engine (open-
ended tube) based on a model using gas dynamic
calculations and experimental results.11

Specific Thrust and Fuel Consumption
The specific thrust and fuel consumption were also
determined using the cycle analysis and are shown in
figures 9 and 10. In these calculations, only the finite
rate heat release values were used. These results
represent the maximum or upper limit values for the
thrust and fuel consumption, as was the case for the
impulse values.

Conclusions
A combination of a thermodynamic cycle and a CFD
finite rate code were used to analyze detonation
behavior in order to establish an upper limit for PDE
cycle performance.

The thermo cycle code was used with both equilibrium
and finite rate sensible heat release values. It was
determined that the recombination occurring during the
detonation/combustion process required the use of the
finite rate values to accurately capture the real gas
effects.

The CFD finite rate heat release was found to be high
due to the ignition mechanism, which caused a large
force that is not representative of the actual ignition
process. These values were corrected and used for
determining propulsion parameters, which in turn, were
compared with the thermo cycle finite rate results. The
comparisons established the cycle upper limits for PDE
performance and the potential gains that may be
realized in PDE nozzle design.

Comparison with available data showed agreement with
both the cycle analysis, namely the maximum upper
limit values, and between the CFD and experimental
data, namely the actual performance.
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